

Mutations Associated with Second-line Tuberculosis Drug Resistance in Georgia

Bablishvili N¹, Tukvadze N¹, Shashkina E², Mathema B³, Gandhi NR⁴, Avaliani Z¹, Blumberg HM⁴, Kempker RR⁴

¹National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia; ²Public Health Research Institute TB Center in Newark, New Jersey, USA; ³Department of Epidemiology, Columbia University, NY, NY, USA, ⁴Division of Infectious Diseases Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.

Introduction

- Georgia is a high-burdened MDR-TB Country
- WHO recommends rapid molecular tests (LPA & Xpert MTB/RIF) to diagnose TB & MDR-TB in high-burden countries
- Rapid Tests for XDR-TB are still limited & results have varied by geography
- Our prior study evaluating the MTBDRsl assay found less than optimal performance
 - OFL: SENS 81%, SPEC 99%
 - KAN: SENS 29%, SPEC 99%
 - CAP: SENS 57%, SPEC 94%

Study Aims

- To identify gyrA & gyrB genetic mutations associated with phenotypic Ofloxacin resistance
- •To identify rrs & eis genetic mutations associated with phenotypic Kanamycin & Capreomycin resistance
- •To evaluate if inclusion of additional mutations would improve performance of MTBDRs/ in our setting

Methods

- Study sites:
 - National Center for TB and Lung Diseases, Tbilisi, Georgia
 - Public Health Research Institute (PHRI) TB Center in Newark, NJ
- Study Design
 - Retrospective study using stored
 - M. tuberculosis (MTB) isolates (from prior study on MTBDRsI performance)
- Laboratory
 - Subculturing MTB isolates
 - DNA extraction (QIAamp DNA mini kit)
 - DNA sequencing: gyrA, gyrB, rrs, eis (Sanger sequencing, performed by Macrogen in NYC)
- Data Analysis
 - Performed with SAS v. 9.3 (Statistical Analysis Software Institute, Cary, NC)
 - Sensitivity/Specificity of MTBDRs/ and DNA sequencing vs. DST

Acknowledgements

Supported in part by the NIH Fogarty International Center (D43TW007124)

DTRA (Defense Threat Reduction Agency)

Results

Performance parameters of *gyrA/gyr*B mutations in detecting any resistance to Ofloxacin, compared to conventional Drug Susceptibility Testing (2 µg/ml LJ), (reference standard) (n=111)

	gyrA	gyrA + gyrB
True Susceptible	95	95
True Resistant	12	14
False Susceptible	4	2
False Resistant	0	0
Sensitivity	75	88
Specificity	100	100
PPV	100	100
NPV	96	98

Performance parameters of *rrs2/eis*1 mutations in detecting any resistance to Capreomycin, compared to conventional Drug Susceptibility Testing (40 μg/ml LJ), (reference standard) (n=111)

	<i>rrs</i> 2 (n=113)	<i>rrs</i> 2+ <i>eis</i> 1 (n=111)
True Susceptible	93	70
True Resistance	8	10
False Susceptible	9	5
False Resistance	3	26
Sensitivity	47	67
Specificity	97	73
PPV	73	28
NPV	91	93

Performance parameters of *rrs*2/*eis*1 mutations in detecting any resistance to Kanamycin, compared to conventional Drug Susceptibility Testing (30 μg/ml LJ) (reference standard) (n=111)

	rrs2 (n=113)	<i>rrs</i> 2+ <i>eis</i> 1 (n=111)	rrs2 + C-14T (n=111)
True Susceptible	49	43	49
True Resistance	11	31	17
False Susceptible	53	30	45
False Resistance	0	6	0
Sensitivity	17	51	28
Specificity	100	88	100
PPV	100	84	100
NPV	48	59	52

Mutations revealed in genes associated with the second line drug resistance by Gene Sequencing

gyrA	gyrB	rrs2	eis1
GCG (A)90GTG (V) GAC(D)94GGC(G)	G145A (CGT-CAT)	A1401G	G-9C (CAG-CAC) G-10A (CAG-CAA) C-12T (CAG-TAG)
G/(G/D)5+GGG(G)	C1628T (GCG-GTG)		C-14T (CCA-CTA) C159A (GGC-GGA)

Conclusions

- The inclusion of the gyrB gene may improve the sensitivity of the MTBDRs/ assay for the detection of OFX resistance
- The inclusion of eis gene (C-14T), as a marker of Km resistance, would improve the sensitivity of rapid detection assays for Km resistance
- Additional eis mutations increased sensitivity for Km & Cm phenotypic resistance but have poor specificity
- In many MTB isolates Km and Cm resistance is not associated with known drug resistance mutations in *rrs* and *eis* genes; further work is needed to determine the mechanism of resistance in such cases